HomeHome New Foundations Explorer
Theorem List (p. 64 of 64)
< Previous  Wrap >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  NFE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for New Foundations Explorer - 6301-6339   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnchoicelem12 6301 Lemma for nchoice 6309. If the T-raising of a cardinal yields a finite special set, then so does the initial set. Theorem 7.1 of [Specker] p. 974. (Contributed by SF, 18-Mar-2015.)
((M NC ( SpacTc M) Fin ) → ( SpacM) Fin )
 
Theoremnchoicelem13 6302 Lemma for nchoice 6309. The cardinality of a special set is at least one. (Contributed by SF, 18-Mar-2015.)
(M NC → 1cc Nc ( SpacM))
 
Theoremnchoicelem14 6303 Lemma for nchoice 6309. When the special set generator yields a singleton, then the cardinal is not raisable. (Contributed by SF, 19-Mar-2015.)
((M NC Nc ( SpacM) = 1c) → ¬ (Mc 0c) NC )
 
Theoremnchoicelem15 6304 Lemma for nchoice 6309. When the special set generator does not yield a singleton, then the cardinal is raisable. (Contributed by SF, 19-Mar-2015.)
((M NC 1c <c Nc ( SpacM)) → (Mc 0c) NC )
 
Theoremnchoicelem16 6305* Lemma for nchoice 6309. Set up stratification for nchoicelem17 6306. (Contributed by SF, 19-Mar-2015.)
{t ( ≤c We NCm NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))))} V
 
Theoremnchoicelem17 6306 Lemma for nchoice 6309. If the special set of a cardinal is finite, then so is the special set of its T-raising, and there is a calculable relationship between their sizes. Theorem 7.2 of [Specker] p. 974. (Contributed by SF, 19-Mar-2015.)
(( ≤c We NC M NC ( SpacM) Fin ) → (( SpacTc M) Fin ( Nc ( SpacTc M) = ( Tc Nc ( SpacM) +c 1c) Nc ( SpacTc M) = ( Tc Nc ( SpacM) +c 2c))))
 
Theoremnchoicelem18 6307 Lemma for nchoice 6309. Set up stratification for nchoicelem19 6308. (Contributed by SF, 20-Mar-2015.)
{x ( Spacx) Fin } V
 
Theoremnchoicelem19 6308 Lemma for nchoice 6309. Assuming well-ordering, there is a cardinal with a finite special set that is its own T-raising. Theorem 7.3 of [Specker] p. 974. (Contributed by SF, 20-Mar-2015.)
( ≤c We NCm NC (( Spacm) Fin Tc m = m))
 
Theoremnchoice 6309 Cardinal less than or equal does not well-order the cardinals. This is equivalent to saying that the axiom of choice from ZFC is false in NF. Theorem 7.5 of [Specker] p. 974. (Contributed by SF, 20-Mar-2015.)
¬ ≤c We NC
 
2.4.7  Finite recursion
 
Syntaxcfrec 6310 Extend the definition of a class to include the finite recursive function generator.
class FRec (F, I)
 
Definitiondf-frec 6311* Define the finite recursive function generator. This is a function over Nn that obeys the standard recursion relationship. Definition adapted from theorem XI.3.24 of [Rosser] p. 412. (Contributed by Scott Fenton, 30-Jul-2019.)
FRec (F, I) = Clos1 ({0c, I}, PProd ((x V (x +c 1c)), F))
 
Theoremfreceq12 6312 Equality theorem for finite recursive function generator. (Contributed by Scott Fenton, 31-Jul-2019.)
((F = G I = J) → FRec (F, I) = FRec (G, J))
 
Theoremfrecexg 6313 The finite recursive function generator preserves sethood. (Contributed by Scott Fenton, 30-Jul-2019.)
F = FRec (G, I)       (G VF V)
 
Theoremfrecex 6314 The finite recursive function generator preserves sethood. (Contributed by Scott Fenton, 30-Jul-2019.)
F = FRec (G, I)    &   G V       F V
 
Theoremfrecxp 6315 Subset relationship for the finite recursive function generator. (Contributed by Scott Fenton, 30-Jul-2019.)
F = FRec (G, I)    &   G V       F ( Nn × (ran G ∪ {I}))
 
Theoremfrecxpg 6316 Subset relationship for the finite recursive function generator. (Contributed by Scott Fenton, 31-Jul-2019.)
F = FRec (G, I)       (G VF ( Nn × (ran G ∪ {I})))
 
Theoremdmfrec 6317 The domain of the finite recursive function generator is the naturals. (Contributed by Scott Fenton, 31-Jul-2019.)
F = FRec (G, I)    &   (φG V)    &   (φI dom G)    &   (φ → ran G dom G)       (φ → dom F = Nn )
 
Theoremfnfreclem1 6318* Lemma for fnfrec 6321. Establish stratification for induction. (Contributed by Scott Fenton, 31-Jul-2019.)
(F V → {w yz((wFy wFz) → y = z)} V)
 
Theoremfnfreclem2 6319 Lemma for fnfrec 6321. Calculate the unique value of F at zero. (Contributed by Scott Fenton, 31-Jul-2019.)
F = FRec (G, I)    &   (φG V)    &   (φI dom G)    &   (φ → ran G dom G)       (φ → (0cFXX = I))
 
Theoremfnfreclem3 6320* Lemma for fnfrec 6321. The value of F at a successor is G related to a previous element. (Contributed by Scott Fenton, 31-Jul-2019.)
F = FRec (G, I)    &   (φG V)    &   (φI dom G)    &   (φ → ran G dom G)    &   (φX Nn )    &   (φ → (X +c 1c)FY)       (φz(XFz zGY))
 
Theoremfnfrec 6321 The recursive function generator is a function over the finite cardinals. (Contributed by Scott Fenton, 31-Jul-2019.)
F = FRec (G, I)    &   (φG Funs )    &   (φI dom G)    &   (φ → ran G dom G)       (φF Fn Nn )
 
Theoremfrec0 6322 Calculate the value of the finite recursive function generator at zero. (Contributed by Scott Fenton, 31-Jul-2019.)
F = FRec (G, I)    &   (φG Funs )    &   (φI dom G)    &   (φ → ran G dom G)       (φ → (F ‘0c) = I)
 
Theoremfrecsuc 6323 Calculate the value of the finite recursive function generator at a successor. (Contributed by Scott Fenton, 31-Jul-2019.)
F = FRec (G, I)    &   (φG Funs )    &   (φI dom G)    &   (φ → ran G dom G)    &   (φX Nn )       (φ → (F ‘(X +c 1c)) = (G ‘(FX)))
 
2.5  Cantorian and Strongly Cantorian Sets
 
Syntaxccan 6324 Extend the definition of class to include the class of all Cantorian sets.
class Can
 
Definitiondf-can 6325 Define the class of all Cantorian sets. These are so-called because Cantor's Theorem Nc A <c Nc A holds for these sets. Definition from [Rosser] p. 347 and [Holmes] p. 134. (Contributed by Scott Fenton, 19-Apr-2021.)
Can = {x 1xx}
 
Syntaxcscan 6326 Extend the definition of class to include the class of all strongly Cantorian sets.
class SCan
 
Definitiondf-scan 6327* Define the class of strongly Cantorian sets. Unlike general Cantorian sets, this fixes a specific mapping between x and 1x. Definition from [Holmes] p. 134. (Contributed by Scott Fenton, 19-Apr-2021.)
SCan = {x (y x {y}) V}
 
Theoremdmsnfn 6328* The domain of the singleton function. (Contributed by Scott Fenton, 20-Apr-2021.)
dom (x A {x}) = A
 
Theoremepelcres 6329 Version of epelc 4766 with a restriction in place. (Contributed by Scott Fenton, 20-Apr-2021.)
Y V       (X A → (X( E A)YX Y))
 
Theoremelcan 6330 Membership in the class of Cantorian sets. (Contributed by Scott Fenton, 19-Apr-2021.)
(A Can1AA)
 
Theoremelscan 6331* Membership in the class of strongly Cantorian sets. (Contributed by Scott Fenton, 19-Apr-2021.)
(A SCan ↔ (x A {x}) V)
 
Theoremscancan 6332 Strongly Cantorian implies Cantorian. Observation from [Holmes], p. 134. (Contributed by Scott Fenton, 19-Apr-2021.)
(A SCanA Can )
 
Theoremcanncb 6333 The cardinality of a Cantorian set is equal to the cardinality of its unit power set. (Contributed by Scott Fenton, 23-Apr-2021.)
(A V → (A CanNc 1A = Nc A))
 
Theoremcannc 6334 The cardinality of a Cantorian set is equal to the cardinality of its unit power set. (Contributed by Scott Fenton, 21-Apr-2021.)
(A CanNc 1A = Nc A)
 
Theoremcanltpw 6335 The cardinality of a Cantorian set is strictly less than the cardinality of its power set. (Contributed by Scott Fenton, 21-Apr-2021.)
(A CanNc A <c Nc A)
 
Theoremcantcb 6336 The cardinality of a Cantorian set is equal to the Tc raising of that cardinal. (Contributed by Scott Fenton, 23-Apr-2021.)
(A V → (A CanTc Nc A = Nc A))
 
Theoremcantc 6337 The cardinality of a Cantorian set is equal to the Tc raising of that cardinal. (Contributed by Scott Fenton, 22-Apr-2021.)
(A CanTc Nc A = Nc A)
 
Theoremvncan 6338 The universe is not Cantorian. Theorem XI.1.8 of [Rosser] p. 348. (Contributed by Scott Fenton, 22-Apr-2021.)
¬ V Can
 
PART 3  GUIDES AND MISCELLANEA
 
3.1  Guides (conventions, explanations, and examples)
 
3.1.1  Conventions

This section describes the conventions we use. These conventions often refer to existing mathematical practices, which are discussed in more detail in other references.

 
Theoremconventions 6339 Unless there is a reason to diverge, we follow the conventions of the Metamath Proof Explorer (MPE, set.mm).

(Contributed by the Metamath team, 20-Jan-2024.) (New usage is discouraged.)

φ       φ
    < Previous  Wrap >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6339
  Copyright terms: Public domain < Previous  Wrap >