New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > freceq12 | GIF version |
Description: Equality theorem for finite recursive function generator. (Contributed by Scott Fenton, 31-Jul-2019.) |
Ref | Expression |
---|---|
freceq12 | ⊢ ((F = G ∧ I = J) → FRec (F, I) = FRec (G, J)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4580 | . . . . 5 ⊢ (I = J → 〈0c, I〉 = 〈0c, J〉) | |
2 | 1 | sneqd 3747 | . . . 4 ⊢ (I = J → {〈0c, I〉} = {〈0c, J〉}) |
3 | clos1eq1 5875 | . . . 4 ⊢ ({〈0c, I〉} = {〈0c, J〉} → Clos1 ({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)), F)) = Clos1 ({〈0c, J〉}, PProd ((x ∈ V ↦ (x +c 1c)), F))) | |
4 | 2, 3 | syl 15 | . . 3 ⊢ (I = J → Clos1 ({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)), F)) = Clos1 ({〈0c, J〉}, PProd ((x ∈ V ↦ (x +c 1c)), F))) |
5 | pprodeq2 5836 | . . . 4 ⊢ (F = G → PProd ((x ∈ V ↦ (x +c 1c)), F) = PProd ((x ∈ V ↦ (x +c 1c)), G)) | |
6 | clos1eq2 5876 | . . . 4 ⊢ ( PProd ((x ∈ V ↦ (x +c 1c)), F) = PProd ((x ∈ V ↦ (x +c 1c)), G) → Clos1 ({〈0c, J〉}, PProd ((x ∈ V ↦ (x +c 1c)), F)) = Clos1 ({〈0c, J〉}, PProd ((x ∈ V ↦ (x +c 1c)), G))) | |
7 | 5, 6 | syl 15 | . . 3 ⊢ (F = G → Clos1 ({〈0c, J〉}, PProd ((x ∈ V ↦ (x +c 1c)), F)) = Clos1 ({〈0c, J〉}, PProd ((x ∈ V ↦ (x +c 1c)), G))) |
8 | 4, 7 | sylan9eqr 2407 | . 2 ⊢ ((F = G ∧ I = J) → Clos1 ({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)), F)) = Clos1 ({〈0c, J〉}, PProd ((x ∈ V ↦ (x +c 1c)), G))) |
9 | df-frec 6311 | . 2 ⊢ FRec (F, I) = Clos1 ({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)), F)) | |
10 | df-frec 6311 | . 2 ⊢ FRec (G, J) = Clos1 ({〈0c, J〉}, PProd ((x ∈ V ↦ (x +c 1c)), G)) | |
11 | 8, 9, 10 | 3eqtr4g 2410 | 1 ⊢ ((F = G ∧ I = J) → FRec (F, I) = FRec (G, J)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 Vcvv 2860 {csn 3738 1cc1c 4135 0cc0c 4375 +c cplc 4376 〈cop 4562 ↦ cmpt 5652 PProd cpprod 5738 Clos1 cclos1 5873 FRec cfrec 6310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-txp 5737 df-pprod 5739 df-clos1 5874 df-frec 6311 |
This theorem is referenced by: frecxp 6315 frecxpg 6316 |
Copyright terms: Public domain | W3C validator |