NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  freceq12 GIF version

Theorem freceq12 6312
Description: Equality theorem for finite recursive function generator. (Contributed by Scott Fenton, 31-Jul-2019.)
Assertion
Ref Expression
freceq12 ((F = G I = J) → FRec (F, I) = FRec (G, J))

Proof of Theorem freceq12
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 opeq2 4580 . . . . 5 (I = J0c, I = 0c, J)
21sneqd 3747 . . . 4 (I = J → {0c, I} = {0c, J})
3 clos1eq1 5875 . . . 4 ({0c, I} = {0c, J} → Clos1 ({0c, I}, PProd ((x V (x +c 1c)), F)) = Clos1 ({0c, J}, PProd ((x V (x +c 1c)), F)))
42, 3syl 15 . . 3 (I = J Clos1 ({0c, I}, PProd ((x V (x +c 1c)), F)) = Clos1 ({0c, J}, PProd ((x V (x +c 1c)), F)))
5 pprodeq2 5836 . . . 4 (F = GPProd ((x V (x +c 1c)), F) = PProd ((x V (x +c 1c)), G))
6 clos1eq2 5876 . . . 4 ( PProd ((x V (x +c 1c)), F) = PProd ((x V (x +c 1c)), G) → Clos1 ({0c, J}, PProd ((x V (x +c 1c)), F)) = Clos1 ({0c, J}, PProd ((x V (x +c 1c)), G)))
75, 6syl 15 . . 3 (F = G Clos1 ({0c, J}, PProd ((x V (x +c 1c)), F)) = Clos1 ({0c, J}, PProd ((x V (x +c 1c)), G)))
84, 7sylan9eqr 2407 . 2 ((F = G I = J) → Clos1 ({0c, I}, PProd ((x V (x +c 1c)), F)) = Clos1 ({0c, J}, PProd ((x V (x +c 1c)), G)))
9 df-frec 6311 . 2 FRec (F, I) = Clos1 ({0c, I}, PProd ((x V (x +c 1c)), F))
10 df-frec 6311 . 2 FRec (G, J) = Clos1 ({0c, J}, PProd ((x V (x +c 1c)), G))
118, 9, 103eqtr4g 2410 1 ((F = G I = J) → FRec (F, I) = FRec (G, J))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642  Vcvv 2860  {csn 3738  1cc1c 4135  0cc0c 4375   +c cplc 4376  cop 4562   cmpt 5652   PProd cpprod 5738   Clos1 cclos1 5873   FRec cfrec 6310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-txp 5737  df-pprod 5739  df-clos1 5874  df-frec 6311
This theorem is referenced by:  frecxp  6315  frecxpg  6316
  Copyright terms: Public domain W3C validator