New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > oddnn | GIF version |
Description: An odd finite cardinal is a finite cardinal. (Contributed by SF, 20-Jan-2015.) |
Ref | Expression |
---|---|
oddnn | ⊢ (A ∈ Oddfin → A ∈ Nn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2359 | . . . . . 6 ⊢ (x = A → (x = ((n +c n) +c 1c) ↔ A = ((n +c n) +c 1c))) | |
2 | 1 | rexbidv 2636 | . . . . 5 ⊢ (x = A → (∃n ∈ Nn x = ((n +c n) +c 1c) ↔ ∃n ∈ Nn A = ((n +c n) +c 1c))) |
3 | neeq1 2525 | . . . . 5 ⊢ (x = A → (x ≠ ∅ ↔ A ≠ ∅)) | |
4 | 2, 3 | anbi12d 691 | . . . 4 ⊢ (x = A → ((∃n ∈ Nn x = ((n +c n) +c 1c) ∧ x ≠ ∅) ↔ (∃n ∈ Nn A = ((n +c n) +c 1c) ∧ A ≠ ∅))) |
5 | df-oddfin 4446 | . . . 4 ⊢ Oddfin = {x ∣ (∃n ∈ Nn x = ((n +c n) +c 1c) ∧ x ≠ ∅)} | |
6 | 4, 5 | elab2g 2988 | . . 3 ⊢ (A ∈ Oddfin → (A ∈ Oddfin ↔ (∃n ∈ Nn A = ((n +c n) +c 1c) ∧ A ≠ ∅))) |
7 | 6 | ibi 232 | . 2 ⊢ (A ∈ Oddfin → (∃n ∈ Nn A = ((n +c n) +c 1c) ∧ A ≠ ∅)) |
8 | nncaddccl 4420 | . . . . . 6 ⊢ ((n ∈ Nn ∧ n ∈ Nn ) → (n +c n) ∈ Nn ) | |
9 | 8 | anidms 626 | . . . . 5 ⊢ (n ∈ Nn → (n +c n) ∈ Nn ) |
10 | peano2 4404 | . . . . 5 ⊢ ((n +c n) ∈ Nn → ((n +c n) +c 1c) ∈ Nn ) | |
11 | eleq1a 2422 | . . . . 5 ⊢ (((n +c n) +c 1c) ∈ Nn → (A = ((n +c n) +c 1c) → A ∈ Nn )) | |
12 | 9, 10, 11 | 3syl 18 | . . . 4 ⊢ (n ∈ Nn → (A = ((n +c n) +c 1c) → A ∈ Nn )) |
13 | 12 | rexlimiv 2733 | . . 3 ⊢ (∃n ∈ Nn A = ((n +c n) +c 1c) → A ∈ Nn ) |
14 | 13 | adantr 451 | . 2 ⊢ ((∃n ∈ Nn A = ((n +c n) +c 1c) ∧ A ≠ ∅) → A ∈ Nn ) |
15 | 7, 14 | syl 15 | 1 ⊢ (A ∈ Oddfin → A ∈ Nn ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∃wrex 2616 ∅c0 3551 1cc1c 4135 Nn cnnc 4374 +c cplc 4376 Oddfin coddfin 4438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-0c 4378 df-addc 4379 df-nnc 4380 df-oddfin 4446 |
This theorem is referenced by: evenoddnnnul 4515 |
Copyright terms: Public domain | W3C validator |