New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > psseq1 | GIF version |
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
psseq1 | ⊢ (A = B → (A ⊊ C ↔ B ⊊ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3292 | . . 3 ⊢ (A = B → (A ⊆ C ↔ B ⊆ C)) | |
2 | neeq1 2524 | . . 3 ⊢ (A = B → (A ≠ C ↔ B ≠ C)) | |
3 | 1, 2 | anbi12d 691 | . 2 ⊢ (A = B → ((A ⊆ C ∧ A ≠ C) ↔ (B ⊆ C ∧ B ≠ C))) |
4 | df-pss 3261 | . 2 ⊢ (A ⊊ C ↔ (A ⊆ C ∧ A ≠ C)) | |
5 | df-pss 3261 | . 2 ⊢ (B ⊊ C ↔ (B ⊆ C ∧ B ≠ C)) | |
6 | 3, 4, 5 | 3bitr4g 279 | 1 ⊢ (A = B → (A ⊊ C ↔ B ⊊ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ≠ wne 2516 ⊆ wss 3257 ⊊ wpss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 df-pss 3261 |
This theorem is referenced by: psseq1i 3358 psseq1d 3361 psstr 3373 sspsstr 3374 |
Copyright terms: Public domain | W3C validator |