NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  psseq2 GIF version

Theorem psseq2 3358
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psseq2 (A = B → (CACB))

Proof of Theorem psseq2
StepHypRef Expression
1 sseq2 3294 . . 3 (A = B → (C AC B))
2 neeq2 2526 . . 3 (A = B → (CACB))
31, 2anbi12d 691 . 2 (A = B → ((C A CA) ↔ (C B CB)))
4 df-pss 3262 . 2 (CA ↔ (C A CA))
5 df-pss 3262 . 2 (CB ↔ (C B CB))
63, 4, 53bitr4g 279 1 (A = B → (CACB))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642  wne 2517   wss 3258  wpss 3259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-pss 3262
This theorem is referenced by:  psseq2i  3360  psseq2d  3363  psssstr  3376
  Copyright terms: Public domain W3C validator