New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pssdif | GIF version |
Description: A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016.) |
Ref | Expression |
---|---|
pssdif | ⊢ (A ⊊ B → (B ∖ A) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3261 | . 2 ⊢ (A ⊊ B ↔ (A ⊆ B ∧ A ≠ B)) | |
2 | pssdifn0 3611 | . 2 ⊢ ((A ⊆ B ∧ A ≠ B) → (B ∖ A) ≠ ∅) | |
3 | 1, 2 | sylbi 187 | 1 ⊢ (A ⊊ B → (B ∖ A) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ≠ wne 2516 ∖ cdif 3206 ⊆ wss 3257 ⊊ wpss 3258 ∅c0 3550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 df-ss 3259 df-pss 3261 df-nul 3551 |
This theorem is referenced by: pssnel 3615 |
Copyright terms: Public domain | W3C validator |