New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfss2 | GIF version |
Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
dfss2 | ⊢ (A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss 3261 | . . 3 ⊢ (A ⊆ B ↔ A = (A ∩ B)) | |
2 | dfcleq 2347 | . . . 4 ⊢ (A = (A ∩ B) ↔ ∀x(x ∈ A ↔ x ∈ (A ∩ B))) | |
3 | elin 3220 | . . . . . 6 ⊢ (x ∈ (A ∩ B) ↔ (x ∈ A ∧ x ∈ B)) | |
4 | 3 | bibi2i 304 | . . . . 5 ⊢ ((x ∈ A ↔ x ∈ (A ∩ B)) ↔ (x ∈ A ↔ (x ∈ A ∧ x ∈ B))) |
5 | 4 | albii 1566 | . . . 4 ⊢ (∀x(x ∈ A ↔ x ∈ (A ∩ B)) ↔ ∀x(x ∈ A ↔ (x ∈ A ∧ x ∈ B))) |
6 | 2, 5 | bitri 240 | . . 3 ⊢ (A = (A ∩ B) ↔ ∀x(x ∈ A ↔ (x ∈ A ∧ x ∈ B))) |
7 | 1, 6 | bitri 240 | . 2 ⊢ (A ⊆ B ↔ ∀x(x ∈ A ↔ (x ∈ A ∧ x ∈ B))) |
8 | pm4.71 611 | . . 3 ⊢ ((x ∈ A → x ∈ B) ↔ (x ∈ A ↔ (x ∈ A ∧ x ∈ B))) | |
9 | 8 | albii 1566 | . 2 ⊢ (∀x(x ∈ A → x ∈ B) ↔ ∀x(x ∈ A ↔ (x ∈ A ∧ x ∈ B))) |
10 | 7, 9 | bitr4i 243 | 1 ⊢ (A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ∩ cin 3209 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: dfss3 3264 dfss2f 3265 ssel 3268 ssriv 3278 ssrdv 3279 sstr2 3280 eqss 3288 nss 3330 rabss2 3350 ssconb 3400 ssequn1 3434 unss 3438 ssin 3478 reldisj 3595 ssdif0 3610 difin0ss 3617 inssdif0 3618 ssundif 3634 sbcss 3661 sscon34 3662 pwss 3737 snss 3839 pwpw0 3856 pwsnALT 3883 disj5 3891 ssuni 3914 unissb 3922 intss 3948 iunss 4008 ssofss 4077 ssetkex 4295 dfpw2 4328 funimass4 5369 clos1induct 5881 dfnnc3 5886 ncssfin 6152 |
Copyright terms: Public domain | W3C validator |