| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 0pss | GIF version | ||
| Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.) |
| Ref | Expression |
|---|---|
| 0pss | ⊢ (∅ ⊊ A ↔ A ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 3580 | . . 3 ⊢ ∅ ⊆ A | |
| 2 | df-pss 3262 | . . 3 ⊢ (∅ ⊊ A ↔ (∅ ⊆ A ∧ ∅ ≠ A)) | |
| 3 | 1, 2 | mpbiran 884 | . 2 ⊢ (∅ ⊊ A ↔ ∅ ≠ A) |
| 4 | necom 2598 | . 2 ⊢ (∅ ≠ A ↔ A ≠ ∅) | |
| 5 | 3, 4 | bitri 240 | 1 ⊢ (∅ ⊊ A ↔ A ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ≠ wne 2517 ⊆ wss 3258 ⊊ wpss 3259 ∅c0 3551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-pss 3262 df-nul 3552 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |