New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nssinpss | GIF version |
Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nssinpss | ⊢ (¬ A ⊆ B ↔ (A ∩ B) ⊊ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3476 | . . 3 ⊢ (A ∩ B) ⊆ A | |
2 | 1 | biantrur 492 | . 2 ⊢ ((A ∩ B) ≠ A ↔ ((A ∩ B) ⊆ A ∧ (A ∩ B) ≠ A)) |
3 | df-ss 3260 | . . 3 ⊢ (A ⊆ B ↔ (A ∩ B) = A) | |
4 | 3 | necon3bbii 2548 | . 2 ⊢ (¬ A ⊆ B ↔ (A ∩ B) ≠ A) |
5 | df-pss 3262 | . 2 ⊢ ((A ∩ B) ⊊ A ↔ ((A ∩ B) ⊆ A ∧ (A ∩ B) ≠ A)) | |
6 | 2, 4, 5 | 3bitr4i 268 | 1 ⊢ (¬ A ⊆ B ↔ (A ∩ B) ⊊ A) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∧ wa 358 ≠ wne 2517 ∩ cin 3209 ⊆ wss 3258 ⊊ wpss 3259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pss 3262 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |