New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfpss3 | GIF version |
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
dfpss3 | ⊢ (A ⊊ B ↔ (A ⊆ B ∧ ¬ B ⊆ A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpss2 3354 | . 2 ⊢ (A ⊊ B ↔ (A ⊆ B ∧ ¬ A = B)) | |
2 | eqss 3287 | . . . . 5 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) | |
3 | 2 | baib 871 | . . . 4 ⊢ (A ⊆ B → (A = B ↔ B ⊆ A)) |
4 | 3 | notbid 285 | . . 3 ⊢ (A ⊆ B → (¬ A = B ↔ ¬ B ⊆ A)) |
5 | 4 | pm5.32i 618 | . 2 ⊢ ((A ⊆ B ∧ ¬ A = B) ↔ (A ⊆ B ∧ ¬ B ⊆ A)) |
6 | 1, 5 | bitri 240 | 1 ⊢ (A ⊊ B ↔ (A ⊆ B ∧ ¬ B ⊆ A)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∧ wa 358 = wceq 1642 ⊆ wss 3257 ⊊ wpss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 df-pss 3261 |
This theorem is referenced by: pssirr 3369 pssn2lp 3370 ssnpss 3372 nsspssun 3488 npss0 3589 pssdifcom1 3635 pssdifcom2 3636 dfpss4 3888 |
Copyright terms: Public domain | W3C validator |