New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-tp | GIF version |
Description: Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {A, B, C} = ({A, B} ∪ {C}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | cC | . . 3 class C | |
4 | 1, 2, 3 | ctp 3740 | . 2 class {A, B, C} |
5 | 1, 2 | cpr 3739 | . . 3 class {A, B} |
6 | 3 | csn 3738 | . . 3 class {C} |
7 | 5, 6 | cun 3208 | . 2 class ({A, B} ∪ {C}) |
8 | 4, 7 | wceq 1642 | 1 wff {A, B, C} = ({A, B} ∪ {C}) |
Colors of variables: wff setvar class |
This definition is referenced by: eltpg 3770 raltpg 3778 rextpg 3779 tpeq1 3809 tpeq2 3810 tpeq3 3811 tpcoma 3817 tpass 3819 qdass 3820 tpidm12 3822 diftpsn3 3850 snsstp1 3859 snsstp2 3860 snsstp3 3861 sstp 3871 tpss 3872 dmtpop 5072 2p1e3c 6157 |
Copyright terms: Public domain | W3C validator |