New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-pr | GIF version |
Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. For example, A ∈ { 1 , -u 1 } → (A ^ 2 ) = 1 (ex-pr in set.mm). They are unordered, so {A, B} = {B, A} as proven by prcom 3799. For a more traditional definition, but requiring a dummy variable, see dfpr2 3750. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-pr | ⊢ {A, B} = ({A} ∪ {B}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | 1, 2 | cpr 3739 | . 2 class {A, B} |
4 | 1 | csn 3738 | . . 3 class {A} |
5 | 2 | csn 3738 | . . 3 class {B} |
6 | 4, 5 | cun 3208 | . 2 class ({A} ∪ {B}) |
7 | 3, 6 | wceq 1642 | 1 wff {A, B} = ({A} ∪ {B}) |
Colors of variables: wff setvar class |
This definition is referenced by: dfsn2 3748 dfpr2 3750 ralprg 3776 rexprg 3777 prcom 3799 preq1 3800 qdass 3820 qdassr 3821 tpidm12 3822 difprsn1 3848 diftpsn3 3850 snsspr1 3857 snsspr2 3858 prss 3862 prssg 3863 ssunpr 3869 sstp 3871 prex 4113 snprss1 4121 prprc2 4123 dmpropg 5069 funprg 5150 funprgOLD 5151 fnimapr 5375 fpr 5438 fvpr1 5450 1p1e2c 6156 el2c 6192 ce2 6193 |
Copyright terms: Public domain | W3C validator |