New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > tpss | GIF version |
Description: A triplet of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpss.1 | ⊢ A ∈ V |
tpss.2 | ⊢ B ∈ V |
tpss.3 | ⊢ C ∈ V |
Ref | Expression |
---|---|
tpss | ⊢ ((A ∈ D ∧ B ∈ D ∧ C ∈ D) ↔ {A, B, C} ⊆ D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss 3438 | . 2 ⊢ (({A, B} ⊆ D ∧ {C} ⊆ D) ↔ ({A, B} ∪ {C}) ⊆ D) | |
2 | df-3an 936 | . . 3 ⊢ ((A ∈ D ∧ B ∈ D ∧ C ∈ D) ↔ ((A ∈ D ∧ B ∈ D) ∧ C ∈ D)) | |
3 | tpss.1 | . . . . 5 ⊢ A ∈ V | |
4 | tpss.2 | . . . . 5 ⊢ B ∈ V | |
5 | 3, 4 | prss 3862 | . . . 4 ⊢ ((A ∈ D ∧ B ∈ D) ↔ {A, B} ⊆ D) |
6 | tpss.3 | . . . . 5 ⊢ C ∈ V | |
7 | 6 | snss 3839 | . . . 4 ⊢ (C ∈ D ↔ {C} ⊆ D) |
8 | 5, 7 | anbi12i 678 | . . 3 ⊢ (((A ∈ D ∧ B ∈ D) ∧ C ∈ D) ↔ ({A, B} ⊆ D ∧ {C} ⊆ D)) |
9 | 2, 8 | bitri 240 | . 2 ⊢ ((A ∈ D ∧ B ∈ D ∧ C ∈ D) ↔ ({A, B} ⊆ D ∧ {C} ⊆ D)) |
10 | df-tp 3744 | . . 3 ⊢ {A, B, C} = ({A, B} ∪ {C}) | |
11 | 10 | sseq1i 3296 | . 2 ⊢ ({A, B, C} ⊆ D ↔ ({A, B} ∪ {C}) ⊆ D) |
12 | 1, 9, 11 | 3bitr4i 268 | 1 ⊢ ((A ∈ D ∧ B ∈ D ∧ C ∈ D) ↔ {A, B, C} ⊆ D) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∈ wcel 1710 Vcvv 2860 ∪ cun 3208 ⊆ wss 3258 {csn 3738 {cpr 3739 {ctp 3740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 df-sn 3742 df-pr 3743 df-tp 3744 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |