New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > tpeq2 | GIF version |
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
tpeq2 | ⊢ (A = B → {C, A, D} = {C, B, D}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq2 3801 | . . 3 ⊢ (A = B → {C, A} = {C, B}) | |
2 | 1 | uneq1d 3418 | . 2 ⊢ (A = B → ({C, A} ∪ {D}) = ({C, B} ∪ {D})) |
3 | df-tp 3744 | . 2 ⊢ {C, A, D} = ({C, A} ∪ {D}) | |
4 | df-tp 3744 | . 2 ⊢ {C, B, D} = ({C, B} ∪ {D}) | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → {C, A, D} = {C, B, D}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∪ cun 3208 {csn 3738 {cpr 3739 {ctp 3740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-tp 3744 |
This theorem is referenced by: tpeq2d 3813 |
Copyright terms: Public domain | W3C validator |