New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sneq | GIF version |
Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sneq | ⊢ (A = B → {A} = {B}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2362 | . . 3 ⊢ (A = B → (x = A ↔ x = B)) | |
2 | 1 | abbidv 2468 | . 2 ⊢ (A = B → {x ∣ x = A} = {x ∣ x = B}) |
3 | df-sn 3742 | . 2 ⊢ {A} = {x ∣ x = A} | |
4 | df-sn 3742 | . 2 ⊢ {B} = {x ∣ x = B} | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → {A} = {B}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 {cab 2339 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-sn 3742 |
This theorem is referenced by: sneqi 3746 sneqd 3747 euabsn 3793 absneu 3795 preq1 3800 tpeq3 3811 snssg 3845 sneqrg 3875 sneqbg 3876 unsneqsn 3888 unisng 3909 opkeq1 4060 snex 4112 snel1c 4141 snel1cg 4142 elpw12 4146 elpw11c 4148 elpw121c 4149 elpw131c 4150 elpw141c 4151 elpw151c 4152 elpw161c 4153 elpw171c 4154 elpw181c 4155 elpw191c 4156 elpw1101c 4157 elpw1111c 4158 pw1sn 4166 eluni1g 4173 elp6 4264 dfpw12 4302 eqpw1uni 4331 pw1eqadj 4333 iotajust 4339 elsuci 4415 nnsucelr 4429 eqtfinrelk 4487 nnadjoin 4521 opeliunxp 4821 elimapw12 4946 elimapw13 4947 elimapw11c 4949 elxp4 5109 fnunsn 5191 fconstg 5252 f1osng 5324 fsng 5434 fnressn 5439 fressnfv 5440 fmpt2x 5731 funsex 5829 eceq1 5963 xpsneng 6051 enadj 6061 enpw1lem1 6062 enpw1 6063 nenpw1pwlem2 6086 1cnc 6140 df1c3g 6142 nmembers1lem3 6271 spacval 6283 nchoicelem11 6300 nchoicelem16 6305 frecxp 6315 |
Copyright terms: Public domain | W3C validator |