| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > snsstp1 | GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp1 | ⊢ {A} ⊆ {A, B, C} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr1 3857 | . . 3 ⊢ {A} ⊆ {A, B} | |
| 2 | ssun1 3427 | . . 3 ⊢ {A, B} ⊆ ({A, B} ∪ {C}) | |
| 3 | 1, 2 | sstri 3282 | . 2 ⊢ {A} ⊆ ({A, B} ∪ {C}) |
| 4 | df-tp 3744 | . 2 ⊢ {A, B, C} = ({A, B} ∪ {C}) | |
| 5 | 3, 4 | sseqtr4i 3305 | 1 ⊢ {A} ⊆ {A, B, C} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3208 ⊆ wss 3258 {csn 3738 {cpr 3739 {ctp 3740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 df-pr 3743 df-tp 3744 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |