New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfiin2 | GIF version |
Description: Alternate definition of indexed intersection when B is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dfiun2.1 | ⊢ B ∈ V |
Ref | Expression |
---|---|
dfiin2 | ⊢ ∩x ∈ A B = ∩{y ∣ ∃x ∈ A y = B} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin2g 4000 | . 2 ⊢ (∀x ∈ A B ∈ V → ∩x ∈ A B = ∩{y ∣ ∃x ∈ A y = B}) | |
2 | dfiun2.1 | . . 3 ⊢ B ∈ V | |
3 | 2 | a1i 10 | . 2 ⊢ (x ∈ A → B ∈ V) |
4 | 1, 3 | mprg 2683 | 1 ⊢ ∩x ∈ A B = ∩{y ∣ ∃x ∈ A y = B} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2615 Vcvv 2859 ∩cint 3926 ∩ciin 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 df-rex 2620 df-v 2861 df-int 3927 df-iin 3972 |
This theorem is referenced by: fniinfv 5372 |
Copyright terms: Public domain | W3C validator |