| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > dfiin2 | GIF version | ||
| Description: Alternate definition of indexed intersection when B is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| dfiun2.1 | ⊢ B ∈ V | 
| Ref | Expression | 
|---|---|
| dfiin2 | ⊢ ∩x ∈ A B = ∩{y ∣ ∃x ∈ A y = B} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfiin2g 4001 | . 2 ⊢ (∀x ∈ A B ∈ V → ∩x ∈ A B = ∩{y ∣ ∃x ∈ A y = B}) | |
| 2 | dfiun2.1 | . . 3 ⊢ B ∈ V | |
| 3 | 2 | a1i 10 | . 2 ⊢ (x ∈ A → B ∈ V) | 
| 4 | 1, 3 | mprg 2684 | 1 ⊢ ∩x ∈ A B = ∩{y ∣ ∃x ∈ A y = B} | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2616 Vcvv 2860 ∩cint 3927 ∩ciin 3971 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-int 3928 df-iin 3973 | 
| This theorem is referenced by: fniinfv 5373 | 
| Copyright terms: Public domain | W3C validator |