New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eeor | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
eeor.1 | ⊢ Ⅎyφ |
eeor.2 | ⊢ Ⅎxψ |
Ref | Expression |
---|---|
eeor | ⊢ (∃x∃y(φ ∨ ψ) ↔ (∃xφ ∨ ∃yψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eeor.1 | . . . 4 ⊢ Ⅎyφ | |
2 | 1 | 19.45 1878 | . . 3 ⊢ (∃y(φ ∨ ψ) ↔ (φ ∨ ∃yψ)) |
3 | 2 | exbii 1582 | . 2 ⊢ (∃x∃y(φ ∨ ψ) ↔ ∃x(φ ∨ ∃yψ)) |
4 | eeor.2 | . . . 4 ⊢ Ⅎxψ | |
5 | 4 | nfex 1843 | . . 3 ⊢ Ⅎx∃yψ |
6 | 5 | 19.44 1877 | . 2 ⊢ (∃x(φ ∨ ∃yψ) ↔ (∃xφ ∨ ∃yψ)) |
7 | 3, 6 | bitri 240 | 1 ⊢ (∃x∃y(φ ∨ ψ) ↔ (∃xφ ∨ ∃yψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |