NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.45 GIF version

Theorem 19.45 1878
Description: Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.45.1 xφ
Assertion
Ref Expression
19.45 (x(φ ψ) ↔ (φ xψ))

Proof of Theorem 19.45
StepHypRef Expression
1 19.43 1605 . 2 (x(φ ψ) ↔ (xφ xψ))
2 19.45.1 . . . 4 xφ
3219.9 1783 . . 3 (xφφ)
43orbi1i 506 . 2 ((xφ xψ) ↔ (φ xψ))
51, 4bitri 240 1 (x(φ ψ) ↔ (φ xψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wo 357  wex 1541  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-ex 1542  df-nf 1545
This theorem is referenced by:  eeor  1885
  Copyright terms: Public domain W3C validator