NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfex GIF version

Theorem nfex 1843
Description: If x is not free in φ, it is not free in yφ. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Hypothesis
Ref Expression
nfal.1 xφ
Assertion
Ref Expression
nfex xyφ

Proof of Theorem nfex
StepHypRef Expression
1 nfal.1 . . . 4 xφ
21nfri 1762 . . 3 (φxφ)
32hbex 1841 . 2 (yφxyφ)
43nfi 1551 1 xyφ
Colors of variables: wff setvar class
Syntax hints:  wex 1541  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  19.12  1847  excomimOLD  1858  eeor  1885  eean  1912  cbvex2  2005  nfeu1  2214  moexex  2273  nfel  2498  ceqsex2  2896  copsex2t  4609  copsex2g  4610  mosubopt  4613  nfopab  4628  nfopab2  4630  cbvopab1  4633  cbvopab1s  4635  nfco  4883  dfdmf  4906  dfrnf  4963  fv3  5342  nfoprab2  5548  nfoprab3  5549  nfoprab  5550  cbvoprab1  5568  cbvoprab2  5569  cbvoprab3  5572
  Copyright terms: Public domain W3C validator