New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfex | GIF version |
Description: If x is not free in φ, it is not free in ∃yφ. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
Ref | Expression |
---|---|
nfal.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
nfex | ⊢ Ⅎx∃yφ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfal.1 | . . . 4 ⊢ Ⅎxφ | |
2 | 1 | nfri 1762 | . . 3 ⊢ (φ → ∀xφ) |
3 | 2 | hbex 1841 | . 2 ⊢ (∃yφ → ∀x∃yφ) |
4 | 3 | nfi 1551 | 1 ⊢ Ⅎx∃yφ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.12 1847 excomimOLD 1858 eeor 1885 eean 1912 cbvex2 2005 nfeu1 2214 moexex 2273 nfel 2498 ceqsex2 2896 copsex2t 4609 copsex2g 4610 mosubopt 4613 nfopab 4628 nfopab2 4630 cbvopab1 4633 cbvopab1s 4635 nfco 4883 dfdmf 4906 dfrnf 4963 fv3 5342 nfoprab2 5548 nfoprab3 5549 nfoprab 5550 cbvoprab1 5568 cbvoprab2 5569 cbvoprab3 5572 |
Copyright terms: Public domain | W3C validator |