New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elin3 | GIF version |
Description: Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
elin3.x | ⊢ X = ((B ∩ C) ∩ D) |
Ref | Expression |
---|---|
elin3 | ⊢ (A ∈ X ↔ (A ∈ B ∧ A ∈ C ∧ A ∈ D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3220 | . . 3 ⊢ (A ∈ (B ∩ C) ↔ (A ∈ B ∧ A ∈ C)) | |
2 | 1 | anbi1i 676 | . 2 ⊢ ((A ∈ (B ∩ C) ∧ A ∈ D) ↔ ((A ∈ B ∧ A ∈ C) ∧ A ∈ D)) |
3 | elin3.x | . . 3 ⊢ X = ((B ∩ C) ∩ D) | |
4 | 3 | elin2 3447 | . 2 ⊢ (A ∈ X ↔ (A ∈ (B ∩ C) ∧ A ∈ D)) |
5 | df-3an 936 | . 2 ⊢ ((A ∈ B ∧ A ∈ C ∧ A ∈ D) ↔ ((A ∈ B ∧ A ∈ C) ∧ A ∈ D)) | |
6 | 2, 4, 5 | 3bitr4i 268 | 1 ⊢ (A ∈ X ↔ (A ∈ B ∧ A ∈ C ∧ A ∈ D)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |