NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elin3 GIF version

Theorem elin3 3448
Description: Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
elin3.x X = ((BC) ∩ D)
Assertion
Ref Expression
elin3 (A X ↔ (A B A C A D))

Proof of Theorem elin3
StepHypRef Expression
1 elin 3220 . . 3 (A (BC) ↔ (A B A C))
21anbi1i 676 . 2 ((A (BC) A D) ↔ ((A B A C) A D))
3 elin3.x . . 3 X = ((BC) ∩ D)
43elin2 3447 . 2 (A X ↔ (A (BC) A D))
5 df-3an 936 . 2 ((A B A C A D) ↔ ((A B A C) A D))
62, 4, 53bitr4i 268 1 (A X ↔ (A B A C A D))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   w3a 934   = wceq 1642   wcel 1710  cin 3209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator