New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elin | GIF version |
Description: Membership in intersection. (Contributed by SF, 10-Jan-2015.) |
Ref | Expression |
---|---|
elin | ⊢ (A ∈ (B ∩ C) ↔ (A ∈ B ∧ A ∈ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 ⊢ (A ∈ (B ∩ C) → A ∈ V) | |
2 | elex 2868 | . . 3 ⊢ (A ∈ B → A ∈ V) | |
3 | 2 | adantr 451 | . 2 ⊢ ((A ∈ B ∧ A ∈ C) → A ∈ V) |
4 | elcomplg 3219 | . . . 4 ⊢ (A ∈ V → (A ∈ ∼ (B ⩃ C) ↔ ¬ A ∈ (B ⩃ C))) | |
5 | elning 3218 | . . . . 5 ⊢ (A ∈ V → (A ∈ (B ⩃ C) ↔ (A ∈ B ⊼ A ∈ C))) | |
6 | 5 | notbid 285 | . . . 4 ⊢ (A ∈ V → (¬ A ∈ (B ⩃ C) ↔ ¬ (A ∈ B ⊼ A ∈ C))) |
7 | 4, 6 | bitrd 244 | . . 3 ⊢ (A ∈ V → (A ∈ ∼ (B ⩃ C) ↔ ¬ (A ∈ B ⊼ A ∈ C))) |
8 | df-in 3214 | . . . 4 ⊢ (B ∩ C) = ∼ (B ⩃ C) | |
9 | 8 | eleq2i 2417 | . . 3 ⊢ (A ∈ (B ∩ C) ↔ A ∈ ∼ (B ⩃ C)) |
10 | df-nan 1288 | . . . 4 ⊢ ((A ∈ B ⊼ A ∈ C) ↔ ¬ (A ∈ B ∧ A ∈ C)) | |
11 | 10 | con2bii 322 | . . 3 ⊢ ((A ∈ B ∧ A ∈ C) ↔ ¬ (A ∈ B ⊼ A ∈ C)) |
12 | 7, 9, 11 | 3bitr4g 279 | . 2 ⊢ (A ∈ V → (A ∈ (B ∩ C) ↔ (A ∈ B ∧ A ∈ C))) |
13 | 1, 3, 12 | pm5.21nii 342 | 1 ⊢ (A ∈ (B ∩ C) ↔ (A ∈ B ∧ A ∈ C)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∧ wa 358 ⊼ wnan 1287 ∈ wcel 1710 Vcvv 2860 ⩃ cnin 3205 ∼ ccompl 3206 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 |
This theorem is referenced by: eldif 3222 dfss2 3263 elin2 3447 elin3 3448 incom 3449 ineqri 3450 ineq1 3451 rabbi2dva 3464 inass 3466 inss1 3476 ssin 3478 ssrin 3481 dfss4 3490 difin 3493 indi 3502 undi 3503 unineq 3506 indifdir 3512 difin2 3517 inrab2 3529 disj 3592 inelcm 3606 difin0ss 3617 inssdif0 3618 inundif 3629 uniin 3912 intun 3959 intpr 3960 elrint 3968 iunin2 4031 iinin2 4037 elriin 4039 iinxprg 4044 elpw1 4145 pw1in 4165 eluni1g 4173 opkelcokg 4262 inxpk 4278 cnvkexg 4287 ssetkex 4295 sikexg 4297 dfimak2 4299 ins2kexg 4306 ins3kexg 4307 dfidk2 4314 ndisjrelk 4324 peano5 4410 nnsucelrlem1 4425 nndisjeq 4430 nnceleq 4431 preaddccan2lem1 4455 ltfinex 4465 ssfin 4471 ncfinraiselem2 4481 ncfinlowerlem1 4483 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnadjoin 4521 nnpweqlem1 4523 srelk 4525 sfintfinlem1 4532 tfinnnlem1 4534 sfinltfin 4536 spfinex 4538 spfininduct 4541 vinf 4556 dfphi2 4570 brin 4694 setconslem2 4733 setconslem4 4735 setconslem6 4737 dfswap2 4742 inopab 4863 inxp 4864 dmin 4914 dminss 5042 imainss 5043 ssrnres 5060 cnvresima 5078 dfco2a 5082 dfxp2 5114 2elresin 5195 nfvres 5353 inpreima 5410 respreima 5411 funfvima 5460 isomin 5497 isoini 5498 dmtxp 5803 releqmpt 5809 composeex 5821 addcfnex 5825 funsex 5829 fnsex 5833 crossex 5851 domfnex 5871 ranfnex 5872 clos1ex 5877 clos1induct 5881 transex 5911 refex 5912 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 mapexi 6004 fnpm 6009 mapval2 6019 nenpw1pwlem1 6085 ovmuc 6131 mucex 6134 nceleq 6150 ovcelem1 6172 ceex 6175 tcfnex 6245 nmembers1lem1 6269 nncdiv3lem1 6276 nncdiv3lem2 6277 spacvallem1 6282 nchoicelem11 6300 nchoicelem18 6307 fnfreclem1 6318 |
Copyright terms: Public domain | W3C validator |