![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > elin | GIF version |
Description: Membership in intersection. (Contributed by SF, 10-Jan-2015.) |
Ref | Expression |
---|---|
elin | ⊢ (A ∈ (B ∩ C) ↔ (A ∈ B ∧ A ∈ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2867 | . 2 ⊢ (A ∈ (B ∩ C) → A ∈ V) | |
2 | elex 2867 | . . 3 ⊢ (A ∈ B → A ∈ V) | |
3 | 2 | adantr 451 | . 2 ⊢ ((A ∈ B ∧ A ∈ C) → A ∈ V) |
4 | elcomplg 3218 | . . . 4 ⊢ (A ∈ V → (A ∈ ∼ (B ⩃ C) ↔ ¬ A ∈ (B ⩃ C))) | |
5 | elning 3217 | . . . . 5 ⊢ (A ∈ V → (A ∈ (B ⩃ C) ↔ (A ∈ B ⊼ A ∈ C))) | |
6 | 5 | notbid 285 | . . . 4 ⊢ (A ∈ V → (¬ A ∈ (B ⩃ C) ↔ ¬ (A ∈ B ⊼ A ∈ C))) |
7 | 4, 6 | bitrd 244 | . . 3 ⊢ (A ∈ V → (A ∈ ∼ (B ⩃ C) ↔ ¬ (A ∈ B ⊼ A ∈ C))) |
8 | df-in 3213 | . . . 4 ⊢ (B ∩ C) = ∼ (B ⩃ C) | |
9 | 8 | eleq2i 2417 | . . 3 ⊢ (A ∈ (B ∩ C) ↔ A ∈ ∼ (B ⩃ C)) |
10 | df-nan 1288 | . . . 4 ⊢ ((A ∈ B ⊼ A ∈ C) ↔ ¬ (A ∈ B ∧ A ∈ C)) | |
11 | 10 | con2bii 322 | . . 3 ⊢ ((A ∈ B ∧ A ∈ C) ↔ ¬ (A ∈ B ⊼ A ∈ C)) |
12 | 7, 9, 11 | 3bitr4g 279 | . 2 ⊢ (A ∈ V → (A ∈ (B ∩ C) ↔ (A ∈ B ∧ A ∈ C))) |
13 | 1, 3, 12 | pm5.21nii 342 | 1 ⊢ (A ∈ (B ∩ C) ↔ (A ∈ B ∧ A ∈ C)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∧ wa 358 ⊼ wnan 1287 ∈ wcel 1710 Vcvv 2859 ⩃ cnin 3204 ∼ ccompl 3205 ∩ cin 3208 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 |
This theorem is referenced by: eldif 3221 dfss2 3262 elin2 3446 elin3 3447 incom 3448 ineqri 3449 ineq1 3450 rabbi2dva 3463 inass 3465 inss1 3475 ssin 3477 ssrin 3480 dfss4 3489 difin 3492 indi 3501 undi 3502 unineq 3505 indifdir 3511 difin2 3516 inrab2 3528 disj 3591 inelcm 3605 difin0ss 3616 inssdif0 3617 inundif 3628 uniin 3911 intun 3958 intpr 3959 elrint 3967 iunin2 4030 iinin2 4036 elriin 4038 iinxprg 4043 elpw1 4144 pw1in 4164 eluni1g 4172 opkelcokg 4261 inxpk 4277 cnvkexg 4286 ssetkex 4294 sikexg 4296 dfimak2 4298 ins2kexg 4305 ins3kexg 4306 dfidk2 4313 ndisjrelk 4323 peano5 4409 nnsucelrlem1 4424 nndisjeq 4429 nnceleq 4430 preaddccan2lem1 4454 ltfinex 4464 ssfin 4470 ncfinraiselem2 4480 ncfinlowerlem1 4482 eqtfinrelk 4486 evenfinex 4503 oddfinex 4504 evenodddisjlem1 4515 nnadjoinlem1 4519 nnadjoin 4520 nnpweqlem1 4522 srelk 4524 sfintfinlem1 4531 tfinnnlem1 4533 sfinltfin 4535 spfinex 4537 spfininduct 4540 vinf 4555 dfphi2 4569 brin 4693 setconslem2 4732 setconslem4 4734 setconslem6 4736 dfswap2 4741 inopab 4862 inxp 4863 dmin 4913 dminss 5041 imainss 5042 ssrnres 5059 cnvresima 5077 dfco2a 5081 dfxp2 5113 2elresin 5194 nfvres 5352 inpreima 5409 respreima 5410 funfvima 5459 isomin 5496 isoini 5497 dmtxp 5802 releqmpt 5808 composeex 5820 addcfnex 5824 funsex 5828 fnsex 5832 crossex 5850 domfnex 5870 ranfnex 5871 clos1ex 5876 clos1induct 5880 transex 5910 refex 5911 antisymex 5912 connexex 5913 foundex 5914 extex 5915 symex 5916 mapexi 6003 fnpm 6008 mapval2 6018 nenpw1pwlem1 6084 ovmuc 6130 mucex 6133 nceleq 6149 ovcelem1 6171 ceex 6174 tcfnex 6244 nmembers1lem1 6268 nncdiv3lem1 6275 nncdiv3lem2 6276 spacvallem1 6281 nchoicelem11 6299 nchoicelem18 6306 fnfreclem1 6317 |
Copyright terms: Public domain | W3C validator |