NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elnin GIF version

Theorem elnin 3225
Description: Membership in anti-intersection. (Contributed by SF, 10-Jan-2015.)
Hypothesis
Ref Expression
elbool.1 A V
Assertion
Ref Expression
elnin (A (BC) ↔ (A B A C))

Proof of Theorem elnin
StepHypRef Expression
1 elbool.1 . 2 A V
2 elning 3218 . 2 (A V → (A (BC) ↔ (A B A C)))
31, 2ax-mp 5 1 (A (BC) ↔ (A B A C))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wnan 1287   wcel 1710  Vcvv 2860  cnin 3205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212
This theorem is referenced by:  nincom  3227  nincompl  4073  ninexg  4098
  Copyright terms: Public domain W3C validator