| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > elcompl | GIF version | ||
| Description: Membership in complement. (Contributed by SF, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| elbool.1 | ⊢ A ∈ V |
| Ref | Expression |
|---|---|
| elcompl | ⊢ (A ∈ ∼ B ↔ ¬ A ∈ B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elbool.1 | . 2 ⊢ A ∈ V | |
| 2 | elcomplg 3219 | . 2 ⊢ (A ∈ V → (A ∈ ∼ B ↔ ¬ A ∈ B)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (A ∈ ∼ B ↔ ¬ A ∈ B) |
| Copyright terms: Public domain | W3C validator |