| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > elqs | GIF version | ||
| Description: Membership in a quotient set. (Contributed by set.mm contributors, 23-Jul-1995.) (Revised by set.mm contributors, 12-Nov-2008.) |
| Ref | Expression |
|---|---|
| elqs.1 | ⊢ B ∈ V |
| Ref | Expression |
|---|---|
| elqs | ⊢ (B ∈ (A / R) ↔ ∃x ∈ A B = [x]R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqs.1 | . 2 ⊢ B ∈ V | |
| 2 | elqsg 5977 | . 2 ⊢ (B ∈ V → (B ∈ (A / R) ↔ ∃x ∈ A B = [x]R)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (B ∈ (A / R) ↔ ∃x ∈ A B = [x]R) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 Vcvv 2860 [cec 5946 / cqs 5947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-qs 5952 |
| This theorem is referenced by: qsid 5991 |
| Copyright terms: Public domain | W3C validator |