NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elsnc2 GIF version

Theorem elsnc2 3762
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that B, rather than A, be a set. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
elsnc2.1 B V
Assertion
Ref Expression
elsnc2 (A {B} ↔ A = B)

Proof of Theorem elsnc2
StepHypRef Expression
1 elsnc2.1 . 2 B V
2 elsnc2g 3761 . 2 (B V → (A {B} ↔ A = B))
31, 2ax-mp 5 1 (A {B} ↔ A = B)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   wcel 1710  Vcvv 2859  {csn 3737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-sn 3741
This theorem is referenced by:  eluni1g  4172  el0c  4421
  Copyright terms: Public domain W3C validator