New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-sn | GIF version |
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3748. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-sn | ⊢ {A} = {x ∣ x = A} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | 1 | csn 3738 | . 2 class {A} |
3 | vx | . . . . 5 setvar x | |
4 | 3 | cv 1641 | . . . 4 class x |
5 | 4, 1 | wceq 1642 | . . 3 wff x = A |
6 | 5, 3 | cab 2339 | . 2 class {x ∣ x = A} |
7 | 2, 6 | wceq 1642 | 1 wff {A} = {x ∣ x = A} |
Colors of variables: wff setvar class |
This definition is referenced by: sneq 3745 elsn 3749 elsncg 3756 csbsng 3786 rabsn 3791 iunid 4022 1cex 4143 pw0 4161 elp6 4264 unipw1 4326 dfeu2 4334 dfiota2 4341 uniabio 4350 nnc0suc 4413 ltfintrilem1 4466 nnadjoin 4521 tfinnn 4535 nulnnn 4557 phi011lem1 4599 fconstopab 4816 dfimafn2 5368 fnsnfv 5374 snec 5988 map0e 6024 |
Copyright terms: Public domain | W3C validator |