NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  el0c GIF version

Theorem el0c 4422
Description: Membership in cardinal zero. (Contributed by SF, 22-Jan-2015.)
Assertion
Ref Expression
el0c (A 0cA = )

Proof of Theorem el0c
StepHypRef Expression
1 df-0c 4378 . . 3 0c = {}
21eleq2i 2417 . 2 (A 0cA {})
3 0ex 4111 . . 3 V
43elsnc2 3763 . 2 (A {} ↔ A = )
52, 4bitri 240 1 (A 0cA = )
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   wcel 1710  c0 3551  {csn 3738  0cc0c 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-0c 4378
This theorem is referenced by:  nulel0c  4423  0fin  4424  ncfinraise  4482  ncfinlower  4484  nnadjoin  4521  nnpweq  4524  sfin01  4529  tfinnn  4535  sfinltfin  4536  vfin1cltv  4548  df0c2  6138  ncvsq  6257  0lt1c  6259  nmembers1lem2  6270
  Copyright terms: Public domain W3C validator