New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralsns | GIF version |
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralsns | ⊢ (A ∈ V → (∀x ∈ {A}φ ↔ [̣A / x]̣φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc6g 3072 | . 2 ⊢ (A ∈ V → ([̣A / x]̣φ ↔ ∀x(x = A → φ))) | |
2 | df-ral 2620 | . . 3 ⊢ (∀x ∈ {A}φ ↔ ∀x(x ∈ {A} → φ)) | |
3 | elsn 3749 | . . . . 5 ⊢ (x ∈ {A} ↔ x = A) | |
4 | 3 | imbi1i 315 | . . . 4 ⊢ ((x ∈ {A} → φ) ↔ (x = A → φ)) |
5 | 4 | albii 1566 | . . 3 ⊢ (∀x(x ∈ {A} → φ) ↔ ∀x(x = A → φ)) |
6 | 2, 5 | bitri 240 | . 2 ⊢ (∀x ∈ {A}φ ↔ ∀x(x = A → φ)) |
7 | 1, 6 | syl6rbbr 255 | 1 ⊢ (A ∈ V → (∀x ∈ {A}φ ↔ [̣A / x]̣φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ∀wral 2615 [̣wsbc 3047 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-sbc 3048 df-sn 3742 |
This theorem is referenced by: ralsng 3766 sbcsng 3784 |
Copyright terms: Public domain | W3C validator |