New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqimss2i GIF version

Theorem eqimss2i 3326
 Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
Hypothesis
Ref Expression
eqimssi.1 A = B
Assertion
Ref Expression
eqimss2i B A

Proof of Theorem eqimss2i
StepHypRef Expression
1 ssid 3290 . 2 B B
2 eqimssi.1 . 2 A = B
31, 2sseqtr4i 3304 1 B A
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642   ⊆ wss 3257 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator