![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > sseqtr4i | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
sseqtr4.1 | ⊢ A ⊆ B |
sseqtr4.2 | ⊢ C = B |
Ref | Expression |
---|---|
sseqtr4i | ⊢ A ⊆ C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtr4.1 | . 2 ⊢ A ⊆ B | |
2 | sseqtr4.2 | . . 3 ⊢ C = B | |
3 | 2 | eqcomi 2357 | . 2 ⊢ B = C |
4 | 1, 3 | sseqtri 3303 | 1 ⊢ A ⊆ C |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ⊆ wss 3257 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: eqimss2i 3326 snsspr1 3856 snsspr2 3857 snsstp1 3858 snsstp2 3859 snsstp3 3860 unissint 3950 iunxdif2 4014 snprss1 4120 opabssxp 4837 dmresi 5004 cnvimass 5016 ssrnres 5059 fvfullfunlem3 5863 mapsspm 6021 sbthlem1 6203 |
Copyright terms: Public domain | W3C validator |