New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sseqtr4i | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
sseqtr4.1 | ⊢ A ⊆ B |
sseqtr4.2 | ⊢ C = B |
Ref | Expression |
---|---|
sseqtr4i | ⊢ A ⊆ C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtr4.1 | . 2 ⊢ A ⊆ B | |
2 | sseqtr4.2 | . . 3 ⊢ C = B | |
3 | 2 | eqcomi 2357 | . 2 ⊢ B = C |
4 | 1, 3 | sseqtri 3304 | 1 ⊢ A ⊆ C |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: eqimss2i 3327 snsspr1 3857 snsspr2 3858 snsstp1 3859 snsstp2 3860 snsstp3 3861 unissint 3951 iunxdif2 4015 snprss1 4121 opabssxp 4838 dmresi 5005 cnvimass 5017 ssrnres 5060 fvfullfunlem3 5864 mapsspm 6022 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |