New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssid | GIF version |
Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
ssid | ⊢ A ⊆ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (x ∈ A → x ∈ A) | |
2 | 1 | ssriv 3278 | 1 ⊢ A ⊆ A |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: eqimssi 3326 eqimss2i 3327 nsspssun 3489 inv1 3578 disjpss 3602 difid 3619 pwidg 3735 elssuni 3920 unimax 3926 intmin 3947 rintn0 4057 ssbri 4682 xpss1 4857 xpss2 4858 residm 4995 resdm 4999 dffn3 5230 fimacnv 5412 clos1nrel 5887 ssetpov 5945 lecidg 6197 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |