NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqnetrri GIF version

Theorem eqnetrri 2536
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrr.1 A = B
eqnetrr.2 AC
Assertion
Ref Expression
eqnetrri BC

Proof of Theorem eqnetrri
StepHypRef Expression
1 eqnetrr.1 . . 3 A = B
21eqcomi 2357 . 2 B = A
3 eqnetrr.2 . 2 AC
42, 3eqnetri 2534 1 BC
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346  df-ne 2519
This theorem is referenced by:  ce0addcnnul  6180  addceq0  6220  1ne0c  6242  2ne0c  6243
  Copyright terms: Public domain W3C validator