New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqnetrri | GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetrr.1 | ⊢ A = B |
eqnetrr.2 | ⊢ A ≠ C |
Ref | Expression |
---|---|
eqnetrri | ⊢ B ≠ C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetrr.1 | . . 3 ⊢ A = B | |
2 | 1 | eqcomi 2357 | . 2 ⊢ B = A |
3 | eqnetrr.2 | . 2 ⊢ A ≠ C | |
4 | 2, 3 | eqnetri 2534 | 1 ⊢ B ≠ C |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ≠ wne 2517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 df-ne 2519 |
This theorem is referenced by: ce0addcnnul 6180 addceq0 6220 1ne0c 6242 2ne0c 6243 |
Copyright terms: Public domain | W3C validator |