| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eqnetrd | GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| eqnetrd.1 | ⊢ (φ → A = B) |
| eqnetrd.2 | ⊢ (φ → B ≠ C) |
| Ref | Expression |
|---|---|
| eqnetrd | ⊢ (φ → A ≠ C) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetrd.2 | . 2 ⊢ (φ → B ≠ C) | |
| 2 | eqnetrd.1 | . . 3 ⊢ (φ → A = B) | |
| 3 | 2 | neeq1d 2530 | . 2 ⊢ (φ → (A ≠ C ↔ B ≠ C)) |
| 4 | 1, 3 | mpbird 223 | 1 ⊢ (φ → A ≠ C) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 ≠ wne 2517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 df-ne 2519 |
| This theorem is referenced by: eqnetrrd 2537 vfin1cltv 4548 nchoicelem12 6301 nchoicelem14 6303 nchoicelem17 6306 |
| Copyright terms: Public domain | W3C validator |