New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqnetrd | GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetrd.1 | ⊢ (φ → A = B) |
eqnetrd.2 | ⊢ (φ → B ≠ C) |
Ref | Expression |
---|---|
eqnetrd | ⊢ (φ → A ≠ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetrd.2 | . 2 ⊢ (φ → B ≠ C) | |
2 | eqnetrd.1 | . . 3 ⊢ (φ → A = B) | |
3 | 2 | neeq1d 2530 | . 2 ⊢ (φ → (A ≠ C ↔ B ≠ C)) |
4 | 1, 3 | mpbird 223 | 1 ⊢ (φ → A ≠ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ≠ wne 2517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 df-ne 2519 |
This theorem is referenced by: eqnetrrd 2537 vfin1cltv 4548 nchoicelem12 6301 nchoicelem14 6303 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |