NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqnetrd GIF version

Theorem eqnetrd 2535
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrd.1 (φA = B)
eqnetrd.2 (φBC)
Assertion
Ref Expression
eqnetrd (φAC)

Proof of Theorem eqnetrd
StepHypRef Expression
1 eqnetrd.2 . 2 (φBC)
2 eqnetrd.1 . . 3 (φA = B)
32neeq1d 2530 . 2 (φ → (ACBC))
41, 3mpbird 223 1 (φAC)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346  df-ne 2519
This theorem is referenced by:  eqnetrrd  2537  vfin1cltv  4548  nchoicelem12  6301  nchoicelem14  6303  nchoicelem17  6306
  Copyright terms: Public domain W3C validator