NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqnetrrd GIF version

Theorem eqnetrrd 2537
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrrd.1 (φA = B)
eqnetrrd.2 (φAC)
Assertion
Ref Expression
eqnetrrd (φBC)

Proof of Theorem eqnetrrd
StepHypRef Expression
1 eqnetrrd.1 . . 3 (φA = B)
21eqcomd 2358 . 2 (φB = A)
3 eqnetrrd.2 . 2 (φAC)
42, 3eqnetrd 2535 1 (φBC)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346  df-ne 2519
This theorem is referenced by:  tfinltfinlem1  4501  vinf  4556
  Copyright terms: Public domain W3C validator