| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eqnetrrd | GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| eqnetrrd.1 | ⊢ (φ → A = B) |
| eqnetrrd.2 | ⊢ (φ → A ≠ C) |
| Ref | Expression |
|---|---|
| eqnetrrd | ⊢ (φ → B ≠ C) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetrrd.1 | . . 3 ⊢ (φ → A = B) | |
| 2 | 1 | eqcomd 2358 | . 2 ⊢ (φ → B = A) |
| 3 | eqnetrrd.2 | . 2 ⊢ (φ → A ≠ C) | |
| 4 | 2, 3 | eqnetrd 2535 | 1 ⊢ (φ → B ≠ C) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 ≠ wne 2517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 df-ne 2519 |
| This theorem is referenced by: tfinltfinlem1 4501 vinf 4556 |
| Copyright terms: Public domain | W3C validator |