New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqcomi | GIF version |
Description: Inference from commutative law for class equality. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcomi.1 | ⊢ A = B |
Ref | Expression |
---|---|
eqcomi | ⊢ B = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcomi.1 | . 2 ⊢ A = B | |
2 | eqcom 2355 | . 2 ⊢ (A = B ↔ B = A) | |
3 | 1, 2 | mpbi 199 | 1 ⊢ B = A |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-cleq 2346 |
This theorem is referenced by: eqtr2i 2374 eqtr3i 2375 eqtr4i 2376 syl5eqr 2399 syl5reqr 2400 syl6eqr 2403 syl6reqr 2404 eqeltrri 2424 eleqtrri 2426 syl5eqelr 2438 syl6eleqr 2444 abid2 2471 abid2f 2515 eqnetrri 2536 neeqtrri 2540 eqsstr3i 3303 sseqtr4i 3305 syl5eqssr 3317 syl6sseqr 3319 inrab2 3529 pw1eqadj 4333 nnsucelrlem3 4427 nulge 4457 ltfinirr 4458 ltfinp1 4463 lefinlteq 4464 lefinrflx 4468 ncfinprop 4475 0ceven 4506 eqbrtrri 4661 breqtrri 4665 syl6breqr 4680 cnvresid 5167 fores 5279 1st2nd2 5517 fnfullfun 5859 clos1basesuc 5883 ncaddccl 6145 ce0t 6233 nchoicelem9 6298 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |