NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  equsalh GIF version

Theorem equsalh 1961
Description: A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
equsalh.1 (ψxψ)
equsalh.2 (x = y → (φψ))
Assertion
Ref Expression
equsalh (x(x = yφ) ↔ ψ)

Proof of Theorem equsalh
StepHypRef Expression
1 equsalh.1 . . 3 (ψxψ)
21nfi 1551 . 2 xψ
3 equsalh.2 . 2 (x = y → (φψ))
42, 3equsal 1960 1 (x(x = yφ) ↔ ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  dvelimh  1964  dvelimALT  2133  dvelimf-o  2180
  Copyright terms: Public domain W3C validator