| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > equsal | GIF version | ||
| Description: A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) |
| Ref | Expression |
|---|---|
| equsal.1 | ⊢ Ⅎxψ |
| equsal.2 | ⊢ (x = y → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| equsal | ⊢ (∀x(x = y → φ) ↔ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsal.2 | . . . . 5 ⊢ (x = y → (φ ↔ ψ)) | |
| 2 | equsal.1 | . . . . . 6 ⊢ Ⅎxψ | |
| 3 | 2 | 19.3 1785 | . . . . 5 ⊢ (∀xψ ↔ ψ) |
| 4 | 1, 3 | syl6bbr 254 | . . . 4 ⊢ (x = y → (φ ↔ ∀xψ)) |
| 5 | 4 | pm5.74i 236 | . . 3 ⊢ ((x = y → φ) ↔ (x = y → ∀xψ)) |
| 6 | 5 | albii 1566 | . 2 ⊢ (∀x(x = y → φ) ↔ ∀x(x = y → ∀xψ)) |
| 7 | 2 | nfri 1762 | . . . . 5 ⊢ (ψ → ∀xψ) |
| 8 | 7 | a1d 22 | . . . 4 ⊢ (ψ → (x = y → ∀xψ)) |
| 9 | 2, 8 | alrimi 1765 | . . 3 ⊢ (ψ → ∀x(x = y → ∀xψ)) |
| 10 | ax9o 1950 | . . 3 ⊢ (∀x(x = y → ∀xψ) → ψ) | |
| 11 | 9, 10 | impbii 180 | . 2 ⊢ (ψ ↔ ∀x(x = y → ∀xψ)) |
| 12 | 6, 11 | bitr4i 243 | 1 ⊢ (∀x(x = y → φ) ↔ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: equsalh 1961 equsex 1962 dvelimf 1997 sb6x 2029 fun11 5160 |
| Copyright terms: Public domain | W3C validator |