Proof of Theorem dvelimALT
| Step | Hyp | Ref
| Expression |
| 1 | | ax-17 1616 |
. . 3
⊢ (¬ ∀x x = y →
∀z
¬ ∀x x = y) |
| 2 | | ax16ALT 2047 |
. . . . 5
⊢ (∀x x = z →
((z = y
→ φ) → ∀x(z = y →
φ))) |
| 3 | 2 | a1d 22 |
. . . 4
⊢ (∀x x = z →
(¬ ∀x x = y → ((z =
y → φ) → ∀x(z = y →
φ)))) |
| 4 | | hbn1 1730 |
. . . . . . 7
⊢ (¬ ∀x x = z →
∀x
¬ ∀x x = z) |
| 5 | | hbn1 1730 |
. . . . . . 7
⊢ (¬ ∀x x = y →
∀x
¬ ∀x x = y) |
| 6 | 4, 5 | hban 1828 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
∀x(¬ ∀x x = z ∧ ¬ ∀x x = y)) |
| 7 | | ax12o 1934 |
. . . . . . 7
⊢ (¬ ∀x x = z →
(¬ ∀x x = y → (z =
y → ∀x z = y))) |
| 8 | 7 | imp 418 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
(z = y
→ ∀x z = y)) |
| 9 | | dvelimALT.1 |
. . . . . . 7
⊢ (φ → ∀xφ) |
| 10 | 9 | a1i 10 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
(φ → ∀xφ)) |
| 11 | 6, 8, 10 | hbimd 1815 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
((z = y
→ φ) → ∀x(z = y →
φ))) |
| 12 | 11 | ex 423 |
. . . 4
⊢ (¬ ∀x x = z →
(¬ ∀x x = y → ((z =
y → φ) → ∀x(z = y →
φ)))) |
| 13 | 3, 12 | pm2.61i 156 |
. . 3
⊢ (¬ ∀x x = y →
((z = y
→ φ) → ∀x(z = y →
φ))) |
| 14 | 1, 13 | hbald 1740 |
. 2
⊢ (¬ ∀x x = y →
(∀z(z = y → φ)
→ ∀x∀z(z = y → φ))) |
| 15 | | ax-17 1616 |
. . 3
⊢ (ψ → ∀zψ) |
| 16 | | dvelimALT.2 |
. . 3
⊢ (z = y →
(φ ↔ ψ)) |
| 17 | 15, 16 | equsalh 1961 |
. 2
⊢ (∀z(z = y →
φ) ↔ ψ) |
| 18 | 17 | albii 1566 |
. 2
⊢ (∀x∀z(z = y →
φ) ↔ ∀xψ) |
| 19 | 14, 17, 18 | 3imtr3g 260 |
1
⊢ (¬ ∀x x = y →
(ψ → ∀xψ)) |