New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ncfin | GIF version |
Description: The cardinality of a set is a natural iff the set is finite. (Contributed by SF, 19-Mar-2015.) |
Ref | Expression |
---|---|
ncfin.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
ncfin | ⊢ ( Nc A ∈ Nn ↔ A ∈ Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncfin.1 | . . . . 5 ⊢ A ∈ V | |
2 | 1 | ncid 6124 | . . . 4 ⊢ A ∈ Nc A |
3 | eleq2 2414 | . . . . 5 ⊢ (n = Nc A → (A ∈ n ↔ A ∈ Nc A)) | |
4 | 3 | rspcev 2956 | . . . 4 ⊢ (( Nc A ∈ Nn ∧ A ∈ Nc A) → ∃n ∈ Nn A ∈ n) |
5 | 2, 4 | mpan2 652 | . . 3 ⊢ ( Nc A ∈ Nn → ∃n ∈ Nn A ∈ n) |
6 | eqcom 2355 | . . . . . . . . 9 ⊢ ( Nc A = n ↔ n = Nc A) | |
7 | nnnc 6147 | . . . . . . . . . 10 ⊢ (n ∈ Nn → n ∈ NC ) | |
8 | ncseqnc 6129 | . . . . . . . . . 10 ⊢ (n ∈ NC → (n = Nc A ↔ A ∈ n)) | |
9 | 7, 8 | syl 15 | . . . . . . . . 9 ⊢ (n ∈ Nn → (n = Nc A ↔ A ∈ n)) |
10 | 6, 9 | syl5bb 248 | . . . . . . . 8 ⊢ (n ∈ Nn → ( Nc A = n ↔ A ∈ n)) |
11 | 10 | biimpar 471 | . . . . . . 7 ⊢ ((n ∈ Nn ∧ A ∈ n) → Nc A = n) |
12 | 11 | eleq1d 2419 | . . . . . 6 ⊢ ((n ∈ Nn ∧ A ∈ n) → ( Nc A ∈ Nn ↔ n ∈ Nn )) |
13 | 12 | exbiri 605 | . . . . 5 ⊢ (n ∈ Nn → (A ∈ n → (n ∈ Nn → Nc A ∈ Nn ))) |
14 | 13 | pm2.43a 45 | . . . 4 ⊢ (n ∈ Nn → (A ∈ n → Nc A ∈ Nn )) |
15 | 14 | rexlimiv 2733 | . . 3 ⊢ (∃n ∈ Nn A ∈ n → Nc A ∈ Nn ) |
16 | 5, 15 | impbii 180 | . 2 ⊢ ( Nc A ∈ Nn ↔ ∃n ∈ Nn A ∈ n) |
17 | elfin 4421 | . 2 ⊢ (A ∈ Fin ↔ ∃n ∈ Nn A ∈ n) | |
18 | 16, 17 | bitr4i 243 | 1 ⊢ ( Nc A ∈ Nn ↔ A ∈ Fin ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 Vcvv 2860 Nn cnnc 4374 Fin cfin 4377 NC cncs 6089 Nc cnc 6092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-nc 6102 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |