New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax12olem5 | GIF version |
Description: Lemma for ax12o 1934. See ax12olem6 1932 for derivation of ax12o 1934 from the conclusion. (Contributed by NM, 24-Dec-2015.) |
Ref | Expression |
---|---|
ax12olem5.1 | ⊢ (¬ x = y → (¬ ∀x ¬ y = z → ∀x y = z)) |
Ref | Expression |
---|---|
ax12olem5 | ⊢ (¬ ∀x x = y → (y = z → ∀x y = z)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnal 1574 | . 2 ⊢ (∃x ¬ x = y ↔ ¬ ∀x x = y) | |
2 | 19.8a 1756 | . . 3 ⊢ (y = z → ∃x y = z) | |
3 | hbe1 1731 | . . . . 5 ⊢ (∃x y = z → ∀x∃x y = z) | |
4 | hba1 1786 | . . . . 5 ⊢ (∀x y = z → ∀x∀x y = z) | |
5 | 3, 4 | hbim 1817 | . . . 4 ⊢ ((∃x y = z → ∀x y = z) → ∀x(∃x y = z → ∀x y = z)) |
6 | df-ex 1542 | . . . . 5 ⊢ (∃x y = z ↔ ¬ ∀x ¬ y = z) | |
7 | ax12olem5.1 | . . . . 5 ⊢ (¬ x = y → (¬ ∀x ¬ y = z → ∀x y = z)) | |
8 | 6, 7 | syl5bi 208 | . . . 4 ⊢ (¬ x = y → (∃x y = z → ∀x y = z)) |
9 | 5, 8 | exlimih 1804 | . . 3 ⊢ (∃x ¬ x = y → (∃x y = z → ∀x y = z)) |
10 | 2, 9 | syl5 28 | . 2 ⊢ (∃x ¬ x = y → (y = z → ∀x y = z)) |
11 | 1, 10 | sylbir 204 | 1 ⊢ (¬ ∀x x = y → (y = z → ∀x y = z)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: ax12olem7 1933 |
Copyright terms: Public domain | W3C validator |