| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > exlimi | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| exlimi.1 | ⊢ Ⅎxψ |
| exlimi.2 | ⊢ (φ → ψ) |
| Ref | Expression |
|---|---|
| exlimi | ⊢ (∃xφ → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimi.1 | . . 3 ⊢ Ⅎxψ | |
| 2 | 1 | 19.23 1801 | . 2 ⊢ (∀x(φ → ψ) ↔ (∃xφ → ψ)) |
| 3 | exlimi.2 | . 2 ⊢ (φ → ψ) | |
| 4 | 2, 3 | mpgbi 1549 | 1 ⊢ (∃xφ → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1541 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: exlimih 1804 19.41 1879 equs5a 1887 sb5rf 2090 euan 2261 moexex 2273 ceqsex 2894 sbhypf 2905 vtoclgf 2914 vtoclef 2928 copsexg 4608 copsex2g 4610 ralxpf 4828 fv3 5342 tz6.12c 5348 |
| Copyright terms: Public domain | W3C validator |