Step | Hyp | Ref
| Expression |
1 | | a9ev 1656 |
. 2
⊢ ∃w w = z |
2 | | ax10lem5 1942 |
. 2
⊢ (∀x x = y →
∀w
w = z) |
3 | | hbn1 1730 |
. . . . 5
⊢ (¬ ∀w w = z →
∀w
¬ ∀w w = z) |
4 | | pm2.21 100 |
. . . . 5
⊢ (¬ ∀w w = z →
(∀w
w = z
→ (φ → ∀zφ))) |
5 | 3, 4 | alrimih 1565 |
. . . 4
⊢ (¬ ∀w w = z →
∀w(∀w w = z → (φ
→ ∀zφ))) |
6 | | ax-17 1616 |
. . . . 5
⊢ ((φ → ∀zφ) → ∀w(φ → ∀zφ)) |
7 | | ax-1 6 |
. . . . 5
⊢ ((φ → ∀zφ) → (∀w w = z →
(φ → ∀zφ))) |
8 | 6, 7 | alrimih 1565 |
. . . 4
⊢ ((φ → ∀zφ) → ∀w(∀w w = z →
(φ → ∀zφ))) |
9 | 5, 8 | ja 153 |
. . 3
⊢ ((∀w w = z →
(φ → ∀zφ)) → ∀w(∀w w = z →
(φ → ∀zφ))) |
10 | | ax10lem5 1942 |
. . . 4
⊢ (∀w w = z →
∀z
z = w) |
11 | | equcomi 1679 |
. . . . . . 7
⊢ (w = z →
z = w) |
12 | | ax-17 1616 |
. . . . . . 7
⊢ (φ → ∀wφ) |
13 | | ax-11 1746 |
. . . . . . 7
⊢ (z = w →
(∀wφ →
∀z(z = w → φ))) |
14 | 11, 12, 13 | syl2im 34 |
. . . . . 6
⊢ (w = z →
(φ → ∀z(z = w →
φ))) |
15 | | ax-5 1557 |
. . . . . 6
⊢ (∀z(z = w →
φ) → (∀z z = w →
∀zφ)) |
16 | 14, 15 | syl6 29 |
. . . . 5
⊢ (w = z →
(φ → (∀z z = w →
∀zφ))) |
17 | 16 | com23 72 |
. . . 4
⊢ (w = z →
(∀z
z = w
→ (φ → ∀zφ))) |
18 | 10, 17 | syl5 28 |
. . 3
⊢ (w = z →
(∀w
w = z
→ (φ → ∀zφ))) |
19 | 9, 18 | exlimih 1804 |
. 2
⊢ (∃w w = z →
(∀w
w = z
→ (φ → ∀zφ))) |
20 | 1, 2, 19 | mpsyl 59 |
1
⊢ (∀x x = y →
(φ → ∀zφ)) |