NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  f1ofn GIF version

Theorem f1ofn 5289
Description: A one-to-one onto mapping is function on its domain. (Contributed by set.mm contributors, 12-Dec-2003.)
Assertion
Ref Expression
f1ofn (F:A1-1-ontoBF Fn A)

Proof of Theorem f1ofn
StepHypRef Expression
1 f1of 5288 . 2 (F:A1-1-ontoBF:A–→B)
2 ffn 5224 . 2 (F:A–→BF Fn A)
31, 2syl 15 1 (F:A1-1-ontoBF Fn A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   Fn wfn 4777  –→wf 4778  1-1-ontowf1o 4781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-f 4792  df-f1 4793  df-f1o 4795
This theorem is referenced by:  f1ofun  5290  f1odm  5291  f1ofveu  5481  isomin  5497  isoini  5498  nenpw1pwlem2  6086
  Copyright terms: Public domain W3C validator