New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ffn | GIF version |
Description: A mapping is a function. (Contributed by set.mm contributors, 2-Aug-1994.) |
Ref | Expression |
---|---|
ffn | ⊢ (F:A–→B → F Fn A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 4792 | . 2 ⊢ (F:A–→B ↔ (F Fn A ∧ ran F ⊆ B)) | |
2 | 1 | simplbi 446 | 1 ⊢ (F:A–→B → F Fn A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3258 ran crn 4774 Fn wfn 4777 –→wf 4778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-f 4792 |
This theorem is referenced by: ffun 5226 fdm 5227 fcoi1 5241 feu 5243 fcnvres 5244 fnconstg 5253 f1fn 5260 fofn 5272 dffo2 5274 f1ofn 5289 fvco3 5385 ffvelrn 5416 dff2 5420 dffo3 5423 dffo4 5424 dffo5 5425 ffnfv 5428 fsn2 5435 fconst2g 5453 fconstfv 5457 dff13 5472 mapsn 6027 enprmaplem3 6079 |
Copyright terms: Public domain | W3C validator |