NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  f1odm GIF version

Theorem f1odm 5291
Description: The domain of a one-to-one onto mapping. (Contributed by set.mm contributors, 8-Mar-2014.)
Assertion
Ref Expression
f1odm (F:A1-1-ontoB → dom F = A)

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5289 . 2 (F:A1-1-ontoBF Fn A)
2 fndm 5183 . 2 (F Fn A → dom F = A)
31, 2syl 15 1 (F:A1-1-ontoB → dom F = A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  dom cdm 4773   Fn wfn 4777  1-1-ontowf1o 4781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-fn 4791  df-f 4792  df-f1 4793  df-f1o 4795
This theorem is referenced by:  bren  6031  enpw1  6063  enmap1lem5  6074  nenpw1pwlem2  6086  ncdisjun  6137  sbthlem3  6206
  Copyright terms: Public domain W3C validator