NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  feq2i GIF version

Theorem feq2i 5219
Description: Equality inference for functions. (Contributed by set.mm contributors, 5-Sep-2011.)
Hypothesis
Ref Expression
feq2i.1 A = B
Assertion
Ref Expression
feq2i (F:A–→CF:B–→C)

Proof of Theorem feq2i
StepHypRef Expression
1 feq2i.1 . 2 A = B
2 feq2 5212 . 2 (A = B → (F:A–→CF:B–→C))
31, 2ax-mp 5 1 (F:A–→CF:B–→C)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642  –→wf 4778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-fn 4791  df-f 4792
This theorem is referenced by:  fmpt2x  5731  fmpt2  5732
  Copyright terms: Public domain W3C validator