Step | Hyp | Ref
| Expression |
1 | | vex 2863 |
. . . . . . . 8
⊢ z ∈
V |
2 | | vex 2863 |
. . . . . . . 8
⊢ w ∈
V |
3 | 1, 2 | op1std 5523 |
. . . . . . 7
⊢ (v = 〈z, w〉 → (1st ‘v) = z) |
4 | 3 | csbeq1d 3143 |
. . . . . 6
⊢ (v = 〈z, w〉 → [(1st ‘v) / x][(2nd ‘v) / y]C =
[z / x][(2nd ‘v) / y]C) |
5 | 1, 2 | op2ndd 5524 |
. . . . . . . 8
⊢ (v = 〈z, w〉 → (2nd ‘v) = w) |
6 | 5 | csbeq1d 3143 |
. . . . . . 7
⊢ (v = 〈z, w〉 → [(2nd ‘v) / y]C =
[w / y]C) |
7 | 6 | csbeq2dv 3162 |
. . . . . 6
⊢ (v = 〈z, w〉 → [z / x][(2nd ‘v) / y]C =
[z / x][w / y]C) |
8 | 4, 7 | eqtrd 2385 |
. . . . 5
⊢ (v = 〈z, w〉 → [(1st ‘v) / x][(2nd ‘v) / y]C =
[z / x][w / y]C) |
9 | 8 | eleq1d 2419 |
. . . 4
⊢ (v = 〈z, w〉 → ([(1st ‘v) / x][(2nd ‘v) / y]C ∈ D ↔
[z / x][w / y]C ∈ D)) |
10 | 9 | raliunxp 4824 |
. . 3
⊢ (∀v ∈ ∪ z ∈ A ({z} ×
[z / x]B)[(1st ‘v) / x][(2nd ‘v) / y]C ∈ D ↔
∀z
∈ A ∀w ∈ [ z /
x]B[z /
x][w / y]C ∈ D) |
11 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎz((x ∈ A ∧ y ∈ B) ∧ v = C) |
12 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎw((x ∈ A ∧ y ∈ B) ∧ v = C) |
13 | | nfv 1619 |
. . . . . . . . 9
⊢ Ⅎx z ∈ A |
14 | | nfcsb1v 3169 |
. . . . . . . . . 10
⊢
Ⅎx[z / x]B |
15 | 14 | nfcri 2484 |
. . . . . . . . 9
⊢ Ⅎx w ∈ [z /
x]B |
16 | 13, 15 | nfan 1824 |
. . . . . . . 8
⊢ Ⅎx(z ∈ A ∧ w ∈ [z /
x]B) |
17 | | nfcsb1v 3169 |
. . . . . . . . 9
⊢
Ⅎx[z / x][w / y]C |
18 | 17 | nfeq2 2501 |
. . . . . . . 8
⊢ Ⅎx v =
[z / x][w / y]C |
19 | 16, 18 | nfan 1824 |
. . . . . . 7
⊢ Ⅎx((z ∈ A ∧ w ∈ [z /
x]B) ∧ v = [z /
x][w / y]C) |
20 | | nfv 1619 |
. . . . . . . 8
⊢ Ⅎy(z ∈ A ∧ w ∈ [z /
x]B) |
21 | | nfcv 2490 |
. . . . . . . . . 10
⊢
Ⅎyz |
22 | | nfcsb1v 3169 |
. . . . . . . . . 10
⊢
Ⅎy[w / y]C |
23 | 21, 22 | nfcsb 3171 |
. . . . . . . . 9
⊢
Ⅎy[z / x][w / y]C |
24 | 23 | nfeq2 2501 |
. . . . . . . 8
⊢ Ⅎy v =
[z / x][w / y]C |
25 | 20, 24 | nfan 1824 |
. . . . . . 7
⊢ Ⅎy((z ∈ A ∧ w ∈ [z /
x]B) ∧ v = [z /
x][w / y]C) |
26 | | eleq1 2413 |
. . . . . . . . . 10
⊢ (x = z →
(x ∈
A ↔ z ∈ A)) |
27 | 26 | adantr 451 |
. . . . . . . . 9
⊢ ((x = z ∧ y = w) → (x
∈ A
↔ z ∈ A)) |
28 | | eleq1 2413 |
. . . . . . . . . 10
⊢ (y = w →
(y ∈
B ↔ w ∈ B)) |
29 | | csbeq1a 3145 |
. . . . . . . . . . 11
⊢ (x = z →
B = [z / x]B) |
30 | 29 | eleq2d 2420 |
. . . . . . . . . 10
⊢ (x = z →
(w ∈
B ↔ w ∈
[z / x]B)) |
31 | 28, 30 | sylan9bbr 681 |
. . . . . . . . 9
⊢ ((x = z ∧ y = w) → (y
∈ B
↔ w ∈ [z /
x]B)) |
32 | 27, 31 | anbi12d 691 |
. . . . . . . 8
⊢ ((x = z ∧ y = w) → ((x
∈ A ∧ y ∈ B) ↔
(z ∈
A ∧
w ∈
[z / x]B))) |
33 | | csbeq1a 3145 |
. . . . . . . . . 10
⊢ (y = w →
C = [w / y]C) |
34 | | csbeq1a 3145 |
. . . . . . . . . 10
⊢ (x = z →
[w / y]C =
[z / x][w / y]C) |
35 | 33, 34 | sylan9eqr 2407 |
. . . . . . . . 9
⊢ ((x = z ∧ y = w) → C =
[z / x][w / y]C) |
36 | 35 | eqeq2d 2364 |
. . . . . . . 8
⊢ ((x = z ∧ y = w) → (v =
C ↔ v = [z /
x][w / y]C)) |
37 | 32, 36 | anbi12d 691 |
. . . . . . 7
⊢ ((x = z ∧ y = w) → (((x
∈ A ∧ y ∈ B) ∧ v = C) ↔ ((z
∈ A ∧ w ∈ [z /
x]B) ∧ v = [z /
x][w / y]C))) |
38 | 11, 12, 19, 25, 37 | cbvoprab12 5570 |
. . . . . 6
⊢ {〈〈x, y〉, v〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ v = C)} = {〈〈z, w〉, v〉 ∣ ((z ∈ A ∧ w ∈
[z / x]B)
∧ v =
[z / x][w / y]C)} |
39 | | df-mpt2 5655 |
. . . . . 6
⊢ (x ∈ A, y ∈ B ↦ C) = {〈〈x, y〉, v〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ v = C)} |
40 | | df-mpt2 5655 |
. . . . . 6
⊢ (z ∈ A, w ∈ [z /
x]B ↦
[z / x][w / y]C) =
{〈〈z, w〉, v〉 ∣ ((z ∈ A ∧ w ∈
[z / x]B)
∧ v =
[z / x][w / y]C)} |
41 | 38, 39, 40 | 3eqtr4i 2383 |
. . . . 5
⊢ (x ∈ A, y ∈ B ↦ C) =
(z ∈
A, w
∈ [z / x]B ↦ [z /
x][w / y]C) |
42 | | fmpt2x.1 |
. . . . 5
⊢ F = (x ∈ A, y ∈ B ↦ C) |
43 | 8 | mpt2mptx 5709 |
. . . . 5
⊢ (v ∈ ∪z ∈ A ({z} × [z / x]B)
↦ [(1st ‘v) / x][(2nd ‘v) / y]C) =
(z ∈
A, w
∈ [z / x]B ↦ [z /
x][w / y]C) |
44 | 41, 42, 43 | 3eqtr4i 2383 |
. . . 4
⊢ F = (v ∈ ∪z ∈ A ({z} ×
[z / x]B)
↦ [(1st ‘v) / x][(2nd ‘v) / y]C) |
45 | 44 | fmpt 5693 |
. . 3
⊢ (∀v ∈ ∪ z ∈ A ({z} ×
[z / x]B)[(1st ‘v) / x][(2nd ‘v) / y]C ∈ D ↔
F:∪z ∈ A ({z} × [z / x]B)–→D) |
46 | 10, 45 | bitr3i 242 |
. 2
⊢ (∀z ∈ A ∀w ∈ [ z /
x]B[z /
x][w / y]C ∈ D ↔
F:∪z ∈ A ({z} × [z / x]B)–→D) |
47 | | nfv 1619 |
. . 3
⊢ Ⅎz∀y ∈ B C ∈ D |
48 | 17 | nfel1 2500 |
. . . 4
⊢ Ⅎx[z /
x][w / y]C ∈ D |
49 | 14, 48 | nfral 2668 |
. . 3
⊢ Ⅎx∀w ∈ [
z / x]B[z /
x][w / y]C ∈ D |
50 | | nfv 1619 |
. . . . 5
⊢ Ⅎw C ∈ D |
51 | 22 | nfel1 2500 |
. . . . 5
⊢ Ⅎy[w /
y]C ∈ D |
52 | 33 | eleq1d 2419 |
. . . . 5
⊢ (y = w →
(C ∈
D ↔ [w / y]C ∈ D)) |
53 | 50, 51, 52 | cbvral 2832 |
. . . 4
⊢ (∀y ∈ B C ∈ D ↔ ∀w ∈ B
[w / y]C ∈ D) |
54 | 34 | eleq1d 2419 |
. . . . 5
⊢ (x = z →
([w / y]C ∈ D ↔
[z / x][w / y]C ∈ D)) |
55 | 29, 54 | raleqbidv 2820 |
. . . 4
⊢ (x = z →
(∀w
∈ B
[w / y]C ∈ D ↔
∀w
∈ [ z / x]B[z /
x][w / y]C ∈ D)) |
56 | 53, 55 | syl5bb 248 |
. . 3
⊢ (x = z →
(∀y
∈ B
C ∈
D ↔ ∀w ∈ [ z /
x]B[z /
x][w / y]C ∈ D)) |
57 | 47, 49, 56 | cbvral 2832 |
. 2
⊢ (∀x ∈ A ∀y ∈ B C ∈ D ↔ ∀z ∈ A ∀w ∈ [ z /
x]B[z /
x][w / y]C ∈ D) |
58 | | nfcv 2490 |
. . . 4
⊢
Ⅎz({x} × B) |
59 | | nfcv 2490 |
. . . . 5
⊢
Ⅎx{z} |
60 | 59, 14 | nfxp 4811 |
. . . 4
⊢
Ⅎx({z} × [z / x]B) |
61 | | sneq 3745 |
. . . . 5
⊢ (x = z →
{x} = {z}) |
62 | 61, 29 | xpeq12d 4810 |
. . . 4
⊢ (x = z →
({x} × B) = ({z}
× [z / x]B)) |
63 | 58, 60, 62 | cbviun 4004 |
. . 3
⊢ ∪x ∈ A ({x} × B) =
∪z ∈ A ({z} × [z / x]B) |
64 | 63 | feq2i 5219 |
. 2
⊢ (F:∪x ∈ A ({x} ×
B)–→D ↔ F:∪z ∈ A ({z} ×
[z / x]B)–→D) |
65 | 46, 57, 64 | 3bitr4i 268 |
1
⊢ (∀x ∈ A ∀y ∈ B C ∈ D ↔ F:∪x ∈ A ({x} ×
B)–→D) |