NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  feq2 GIF version

Theorem feq2 5212
Description: Equality theorem for functions. (Contributed by set.mm contributors, 1-Aug-1994.)
Assertion
Ref Expression
feq2 (A = B → (F:A–→CF:B–→C))

Proof of Theorem feq2
StepHypRef Expression
1 fneq2 5175 . . 3 (A = B → (F Fn AF Fn B))
21anbi1d 685 . 2 (A = B → ((F Fn A ran F C) ↔ (F Fn B ran F C)))
3 df-f 4792 . 2 (F:A–→C ↔ (F Fn A ran F C))
4 df-f 4792 . 2 (F:B–→C ↔ (F Fn B ran F C))
52, 3, 43bitr4g 279 1 (A = B → (F:A–→CF:B–→C))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wss 3258  ran crn 4774   Fn wfn 4777  –→wf 4778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-fn 4791  df-f 4792
This theorem is referenced by:  feq23  5214  feq2d  5216  feq2i  5219  f00  5250  f1eq2  5255  fressnfv  5440  fconstfv  5457  mapex  6007  mapvalg  6010
  Copyright terms: Public domain W3C validator