| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > hb3anOLD | GIF version | ||
| Description: Obsolete proof of hb3an 1830 as of 2-Jan-2018. (Contributed by NM, 14-Sep-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hb.1 | ⊢ (φ → ∀xφ) |
| hb.2 | ⊢ (ψ → ∀xψ) |
| hb.3 | ⊢ (χ → ∀xχ) |
| Ref | Expression |
|---|---|
| hb3anOLD | ⊢ ((φ ∧ ψ ∧ χ) → ∀x(φ ∧ ψ ∧ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 936 | . 2 ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) | |
| 2 | hb.1 | . . . 4 ⊢ (φ → ∀xφ) | |
| 3 | hb.2 | . . . 4 ⊢ (ψ → ∀xψ) | |
| 4 | 2, 3 | hban 1828 | . . 3 ⊢ ((φ ∧ ψ) → ∀x(φ ∧ ψ)) |
| 5 | hb.3 | . . 3 ⊢ (χ → ∀xχ) | |
| 6 | 4, 5 | hban 1828 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) → ∀x((φ ∧ ψ) ∧ χ)) |
| 7 | 1, 6 | hbxfrbi 1568 | 1 ⊢ ((φ ∧ ψ ∧ χ) → ∀x(φ ∧ ψ ∧ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |